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Connexins are the major proteins of gap junctions and
are important in the key process of intercellular com-
munication in most metazoan cell types. Distinct dom-
inant mutations in the same connexin molecules have
been demonstrated to underlie either skin disease or
deafness or, indeed, both disorders. Connexin mutations
also underlie other disorders, including peripheral neu-
ropathy and cataract formation (Francis et al. 1999;
Scherer et al. 1999). This review will focus on recent
genetic studies that have demonstrated the importance
of gap junctions in epidermal disease and hearing loss.

Gap Junctions and Connexins

Gap-junction intercellular communication allows a
mechanism of synchronized cellular response to a variety
of intercellular signals by regulating the direct passage
of low-molecular-weight metabolites (!1,000 daltons)
and ions between the cytoplasm of adjacent cells (Pitts
1998). The skin and inner ear have numerous gap junc-
tions. In the epidermis, gap junctions appear to play a
role in the coordination of keratinocyte growth and dif-
ferentiation (Choudhry et al. 1997), whereas in the sen-
sory epithelia of the inner ear they are proposed to reg-
ulate the recycling of potassium ions during auditory
transduction (Kikuchi et al. 1995). The major proteins
of gap junctions are the connexins (Simon and Good-
enough 1998). These are proteins that have four trans-
membrane domains and that are encoded by a large gene
family, of which 15 human genes have been identified
to date. Connexins form hexameric hemichannels
(termed “connexons”) in the endoplasmic reticulum,
which are then translocated into the plasma membrane.
The connexon then “docks” with a connexon of an ad-
jacent cell to form a functional channel termed a “gap
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junction.” Connexons can form either homotypic, het-
erotypic, or heteromeric channels.

Two types of nomenclature are used to classify the
human connexins, either by molecular mass (in the
range of 26–59 kD) or by sequence similarities, into
three groups: gap junction a (GJA), gap junction b

(GJB), or gap junction g (GJC). Mutations in the gap-
junction genes encoding the b connexins have been
shown to cause epidermal disease, peripheral neurop-
athy, and sensorineural hearing loss (White and Paul
1999; Rabionet et al. 2000a) (The Connexin-Deafness
Homepage). In the human genome, the majority of b-
connexin genes map to two gene clusters—at either
1p34-p35 or 13q11-q12. The following is a summary
of the disorders associated with mutations in b con-
nexins (with the exception of GJB1).

Dominant Connexin Disorders of Keratoderma and/or
Hearing Loss

The inherited keratodermas, a clinically diverse branch
of the genodermatoses, are characterized by thickened
or hyperkeratotic skin on the palms and soles (Kelsell
and Stevens 1999). These epidermal disorders are further
subclassified clinically on the basis of the specific pattern
of palmoplantar thickening and on whether they asso-
ciate with generalized epidermal lesions plus abnormal-
ities of the hair, teeth, nails, and/or sweat glands (ab-
normalities such as the ectodermal dysplasias). In
addition, keratodermas may occur in syndromes with
abnormalities of other organs, such as cardiomyopathy
(McKoy et al. 2000; Norgett et al. 2000) and hearing
impairment (Fitzgerald and Verbov 1996; Sevior et al.
1998). Autosomal dominant mutations in four b con-
nexins have been demonstrated in epidermal disorders.
In three of these connexins, certain mutations may also
result in syndromic or nonsyndromic sensorineural hear-
ing loss.

GJB2 Encoding Connexin 26 (Cx26)

Vohwinkel syndrome (MIM 124500) is an autosomal
dominant condition classified as a “mutilating” diffuse
keratoderma in which hyperkeratosis may develop
around the circumference of the digits at points of flex-
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ion, such as the knuckle. These may form constrictions
(or pseudoainhum) sometimes leading to autoamputa-
tion of the digit. Other classical epidermal features in-
clude a honeycomb pattern of keratoderma with star-
fishlike keratoses on the knuckles. Mild- to-moderate
sensorineural hearing loss is often associated with the
skin disease. Two genetic studies have demonstrated that
a specific mutation, D66H, in the Cx26 gene (GJB2),
underlies Vohwinkel syndrome (Maestrini et al. 1999;
Kelsell et al. 2000). In one of these families (Fitzgerald
and Verbov 1996), the Vohwinkel pattern of kerato-
derma was of a mild form and associated with varying
types of hearing impairment. Two D66H-heterozygous
individuals with the keratoderma in this family were also
profoundly deaf and had previously been shown to be
heterozygous for another Cx26 variant, M34T (Kelsell
et al. 1997). The association between M34T and pro-
found hearing loss in this family led to the subsequent
discovery of recessive GJB2 mutations in nonsyndromic
hearing loss (NSHL) (discussed in the “Mutation
M34T” subsection, below) (Kelsell et al. 1997). It should
be noted that a clinical variant of Vohwinkel syndrome,
which is associated with ichthyosis (dry rough skin with
persistent scaling) but not with hearing loss, is geneti-
cally distinct from GJB2-associated Vohwinkel syn-
drome. Instead, germline mutations in the gene encoding
loricrin, a major protein component of the cornified cell
envelope of the epidermis, have been described (Maes-
trini et al. 1996; Korge et al. 1997).

Other epidermis-associated GJB2 mutations have
been described. In a family in which an autosomal dom-
inant palmoplantar keratoderma and high-frequency
hearing loss (MIM 148350) were cosegregating, the mu-
tation G59A was identified (Heathcote et al. 2000). A
heterozygous 3-bp deletion of the residue E42 (DE42)
has also been associated with deafness and palmoplantar
keratoderma (Bale et al. 1999). The GJB2 mutation,
R75W, has been described in a father and daughter from
an Egyptian family with a skin disease similar to Voh-
winkel syndrome (Richard et al. 1998b). The skin dis-
ease was described as a diffuse hyperkeratosis, with peel-
ing of the palmoplantar and pseudoainhum (see fig. 1A
and 1B). Both individuals also had profound prelingual
hearing impairment. The authors also identified an in-
dividual out of their “control” cohort who was hetero-
zygous for R75W but who had no skin disease. The
hearing status of the individual was unknown. An ad-
ditional individual heterozygous for R75W has been
documented; this individual had profound hearing loss
but only a mild form of diffuse palmoplantar kerato-
derma, with no evidence of pseudoainhum or other clas-
sical epidermal features of Vohwinkel syndrome (Loffeld
et al. 2000). The variability in severity of the palmo-
plantar keratoderma in R75W heterozygotes (also noted
between D66H heterozygotes) suggests that other fac-

tors—either genetic or environmental—may modify the
penetrance of epidermal disease–associated GJB2 alleles.

Specific GJB2 mutations have also been demonstrated
to underlie dominant NSHL mapping to 13q11-q12
(DFNA3 [MIM 601544]). The first mutation proposed
to be a dominant deafness allele, M34T (Kelsell et al.
1997), has now been shown to be a recessive deafness-
associated GJB2 allele (discussed in the “Mutation
M34T” subsection, below). However, other dominant
NSHL GJB2 mutations have been described (Denoyelle
et al. 1998; Morle et al. 2000). The position of these
mutations in the Cx26 protein is shown in figure 2, in
relation to other b-connexin mutations associated with
skin disease and hearing loss.

GJB3 Encoding Connexin 31 (Cx31)

The erythrokeratodermas represent a group of dis-
orders characterized by the presence of fixed or slowly
moving erythematous hyperkeratotic plaques (Rook et
al. 1998). Erythrokeratoderma variabilis (EKV [MIM
133200]) is an autosomal dominant disorder presenting
with diffuse palmoplantar keratoderma and transient
red figurata at other epidermal sites (fig. 1B, 1C, 1D,
and 1E). The erythematous patches affect the whole
body but are more often found on the face, buttocks,
and extensor surfaces of the limbs. With increasing age,
the areas of the body affected by EKV become more
restricted to the palmoplantar epidermis. EKV in a num-
ber of families is linked to the chromosomal region
1p34-p35, where a gene cluster of b connexins map (van
der Schroeff et al. 1984, 1988; Richard et al. 1997).
Subsequently, mutations in affected members from a
number of these pedigrees were identified in the gap-
junction b-3 gene (GJB3 [MIM 603324]) encoding con-
nexin-31 (Richard et al. 1998a). Five GJB3 mutations
causing EKV have been described throughout the Cx31
protein (fig. 2), occurring in the intracellular, extracel-
lular, and transmembrane domains (Wilgoss et al. 1999;
Richard et al. 2000). A family with a disease with phe-
notypic similarities to EKV—that is, progressive sym-
metric erythrokeratoderma (PSEK)—has been described
in which the disease is associated with a mutation in
loricrin (Ishida-Yamamoto et al. 1997). It is of interest
that loricrin mutations have also been described in in-
dividuals affected with the variant form of Vohwinkel
syndrome (Maestrini et al. 1996).

Unlike GJB2 encoding Cx26, none of the GJB3 mu-
tations associated with skin disease are associated with
genetic hearing loss. However, two proposed dominant
GJB3 mutations (R180X and E183K), which are asso-
ciated with progressive hearing loss but not with epi-
dermal manifestations, have also been described (Xia et
al. 1998). Adding complexity is the recent identification
of another dominant GJB3 mutation, 66delD, in a fam-
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Figure 1 Examples of epidermal phenotypes associated with connexin mutations. A and B, R75W mutation in GJB2 in a patient with
palmoplantar keratoderma and profound hearing loss (clinical pictures courtesy of G. Richard, S. Bale, and the Ain-Shams Medical Genetics
Clinic in Cairo, Egypt). C and D, F137L mutation in GJB4 in a patient with erythrokeratoderma variabilis (clinical pictures courtesy of D.
Hohl and B. Mevorah). E and F, R42P mutation in GJB3 in a patient with erythrokeratoderma variabilis (clinical pictures courtesy of C.
Kennedy).

ily with peripheral neuropathy and sensorineural hearing
loss (Lopez-Bigas et al. 2000), thereby raising to three
the number of disorders resulting from GJB3 mutations.
The D66 residue is conserved and functionally important
in other connexins as well. A D66H substitution in GJB2
causes Vohwinkel syndrome (see the preceding subsec-
tion, “GJB2 Encoding Connexin 26 (Cx26)”), whereas
66delD in the gene for another b connexin, GJB1 en-
coding Cx32, results in the peripheral neuropathy dis-
order X-linked Charcot-Marie-Tooth (Haites et al.
1998). It should be noted that a number of Cx32 mu-
tations are also associated with hearing loss in combi-
nation with peripheral neuropathy.

GJB4 Encoding Connexin 30.3 (Cx30.3)

Although EKV in all families described to date is
linked to the chromosomal region 1p34-1p35, not all
have mutations in GJB3. Recently, an F137L mutation
in GJB4, which also maps to 1p34-35, was identified in
the affected members of a family with EKV (Macari et
al. 2000). The mutated residue in Cx30.3, the epider-
mally expressed b connexin encoded by GJB4, lies in
the third transmembrane domain. The same missense
mutation has also been demonstrated in GJB3 in another
individual with EKV (Richard et al. 2000). Further fam-
ilies with EKV that have Cx30.3 mutations have now
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Figure 2 Schematic of protein domains of Cx26, Cx31, Cx30, and Cx30.3, with localization of disease-associated mutations. “M1”–“M4”
denote transmembrane-spanning domains; “E1” and “E2” denote extracellular domains; “CL” denotes cytoplasmic loop; “NT” denotes cy-
toplasmic amino terminus; “CT” denotes cytoplasmic carboxy terminus. Green circles denote mutations associated with epidermal disease;
yellow circles denote mutations associated with hearing loss; yellow circles with black dots denote mutations associated with profound hearing
loss; yellow circles with horizontal lines denote mutations associated with mild hearing loss; white circles denote mutation associated with
peripheral neuropathy.

been identified (G. Richard, personal communication).
However, there are a number of patients with EKV who
do not harbor either GJB3 mutations or GJB4 mutations
(authors’ unpublished data). It is not yet known whether,
like the other epidermal disease–associated connexins,
there are GJB4 mutations resulting in hearing impair-
ment.

GJB6 Encoding Connexin 30 (Cx30)

Hidrotic ectodermal dysplasia (HED), or Clouston
syndrome [MIM 129500]), is inherited as an autosomal
dominant disorder and has characteristic changes in the
epidermis and the appendages, including diffuse pal-
moplantar keratoderma, nail dystrophy, and sparse scalp
and body hair. In addition, hearing impairment is ob-
served in some individuals with HED. Disease segre-
gating within a large kindred of French Canadian origin
was mapped to the chromosomal region 13q11-q12 (Ki-
bar et al. 1996) and, on the basis of linkage studies of
families with different ethnic origins, subsequently was
shown to be a genetically homogeneous disease (Rad-
hakrishna et al. 1997; Taylor et al. 1998; Stevens et al.
1999). In the chromosomal region harboring the HED
locus map two b connexins, Cx26 and Cx30, encoded

by GJB2 and GJB6 (MIM 604418), respectively. Pre-
viously, GJB2 has been excluded as the genetic basis of
HED (Kelsell et al. 1997). A recent study demonstrated
that all families with HED that were available for genetic
analysis had inherited one of two missense muta-
tions—either G11R or A88V—in GJB6 encoding Cx30
(Lamartine et al. 2000). Prior to this study, the mutation
T5M in GJB6 was associated with high-frequency
NSHL segregating in a small family (Grifa et al. 1999).
Therefore, like GJB2 and GJB3, different dominant mu-
tations in GJB6 result in skin disease, hearing loss, or
both disorders.

Connexin Mutations and Autosomal Recessive NSHL

A genetic etiology is associated with the majority (70%)
of NSHL cases in developed countries. During the past
few years, mapping studies have led to the identification
of 150 autosomal recessive (assigned locus DFNB) and
autosomal dominant (assigned locus DFNA) NSHL loci.
More recently, positional cloning or positional candi-
date-gene screening has isolated 19 genes involved in
NSHL (see Hereditary Hearing Loss Homepage). The
identification of recessive mutations in two b con-
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Table 1

Frequency of Common GJB2 Recessive Mutations in Different NSHL Population Groups

POPULATION

ETHNICITY

TOTAL NO.
OF NSHL
ALLELES

SCREENED

NO. (%) OF GJB2-MUTATION ALLELES

SCREENEDa

REFERENCE(S)35delG 167delT 235delC M34T

Spanish and Italian 1,546b 533 (34.48) 11 (.71) ND 1 (.07) Zelante et al. (1997); Estivill et al. (1998); Murgia et
al. (1999); Rabionet et al. (2000b)

United Kingdom 142b 21 (14.79) ND ND ND Denoyelle et al. (1997); Lench et al. (1998)
United States 116c 33 (28.45) 9 (7.76) ND 2 (1.72) Kelley et al. (1998)
Japanese 308b ND ND 24 (7.80) ND Fuse et al. (1999); Abe et al. (2000); Kudo et al. (2000)
Ashkenazi Jewish 60c 13 (21.67) 34 (56.67) ND ND Morell et al. (1998); Lerer et al. (2000)
French 204b 78 (38.24) ND ND ND Denoyelle et al. (1997); (1999)

a ND p not detected.
b Sib-pair cases and sporadic cases of prelingual NSHL.
c Autosomal recessive prelingual cases of NSHL.

nexin–family members—GJB2 and, to a lesser extent,
GJB3—has had a large impact on the genetic under-
standing of NSHL. This interest is due largely to the fact
that a significant proportion of NSHL is caused by GJB2
mutations.

GJB2 and Autosomal Recessive NSHL

The first autosomal recessive NSHL locus, DFNB1
(MIM 220290), was mapped to 13q12 in two consan-
guineous Tunisian families (Guilford et al. 1994). Fur-
ther mapping studies, of families from different ethnic
populations, confirmed linkage and illustrated the po-
tential contribution of the gene at this locus to NSHL
(Maw et al. 1995; Gasparini et al. 1997). In 1997, two
nonsense mutations of GJB2—W24X and W77X—were
identified in three unrelated Pakistani families that have
linkage to DFNB1 (Kelsell et al. 1997). An independent
study of 35 Mediterranean families with autosomal re-
cessive NSHL refined the DFNB1 interval to ∼5 cM be-
tween markers D13S175 and D13S232. Analysis of the
GJB2 coding region in these families indicated that, in
19 of the 35 families, hearing-impaired individuals were
homozygous for a specific mutation, 35delG (Zelante et
al. 1997). Also, in the same study, hearing-impaired in-
dividuals from another family were found to be com-
pound heterozygotes for 35delG and 167delT. Both se-
quence variants produce a frameshift in the GJB2
mRNA, leading to predicted truncation of the protein
and, hence, loss of function. Subsequent studies, in a
range of different populations, have revealed a multi-
plicity of mutations that include missense and nonsense
base substitutions, deletions, insertions, and a splice-site
modification (see The Connexin-Deafness Homepage).
Interestingly, the frequency of particular mutations
seems to be dependent on the ethnic origin of the pop-
ulation (see table 1), and these mutations are discussed
in the following subsections.

Mutation 35delG (or 30delG)

The 35delG mutation appears to be more prevalent
in individuals with NSHL who are of European origin
(Denoyelle et al. 1997; Estivill et al. 1998; Kelley et al.
1998; Lench et al. 1998; Scott et al. 1998a). In some
populations, the 35delG allele may account for �85%
of all GJB2 mutant alleles detected (Estivill et al. 1998).
Conversely, in 154 individuals with NSHL and in 349
controls of Japanese origin, the 35delG mutation has
not been detected (Fuse et al. 1999; Abe et al. 2000;
Kudo et al. 2000). Five guanine bases precede the nu-
cleotide deleted in 35delG; it has been suggested that
the increased prevalence observed may be due to a mu-
tational hotspot. However, the fluctuation in carrier
status of 35delG in normal hearing populations from
different ethnic groups (1 in 35 in southern Europe and
1 in 79 in northern Europe) would suggest a possible
founder effect and positive selection for 35delG hetero-
zygote status (Gasparini et al. 2000).

Mutation 167delT

The 167delT frameshift mutation was originally re-
ported in (2.3%)1 of 43 GJB2 mutant alleles of Medi-
terranean origin (Zelante et al. 1997). Both its high prev-
alence in Ashkenazi Jewish individuals with NSHL and
the identification of 167delT on a conserved haplotype
at flanking loci suggest a founder event for the origin of
the mutation in this population (Morell et al. 1998; Lerer
et al. 2000; Sobe et al. 2000).

Mutation 235delC

The 235delC frameshift mutation has been detected
only in individuals of Japanese origin, at a frequency of
7.8% in cohorts with NSHL and at a frequency of
0%–1.0% in control cohorts (Fuse et al. 1999; Abe et
al. 2000; Kudo et al. 2000). Analysis of four individuals
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with 235delC who had GJB2 polymorphisms identified
a conserved haplotype in all individuals (Kudo et al.
2000). However, this was also the most common GJB2
haplotype observed in the control population.

Mutation M34T

The M34T mutation was originally postulated as caus-
ing autosomal dominant NSHL, at DFNA3 (Kelsell et al.
1997). This was substantiated by the functional obser-
vations, in the paired-Xenopus-oocyte model, of M34T
Cx26 protein as a dominant disrupter of intercellular con-
ductance (White et al. 1998) and having a deleterious
effect on Cx26 channels in a mammalian-cell assay system
(Martin et al. 1999). In addition, two other dominant
GJB2 mutations associated with NSHL have been iden-
tified in pedigrees that have linkage to DFNA3 (discussed
in the “GJB2 Encoding Connexin 26 (Cx26)” subsection,
above; also see Denoyelle et al. 1998; Morle et al. 2000).
However, detection of the M34T allele in a heterozygous
state in individuals with normal hearing suggested either
an autosomal recessive mode of action or a neutral poly-
morphism (Kelley et al. 1998; Scott et al. 1998b). The
association between M34T in trans with alleles V95M,
R184W, 35delG, and 167delT, in individuals with NSHL,
also supports a recessive mode of action (Kelley et al.
1998; Griffith et al. 2000; Wilcox et al. 2000). Further
evidence for the recessive nature of the M34T variant has
been gained from the identification of the first individuals
homozygous for M34T. Both M34T homozygotes have
mid-to-high–frequency hearing loss (Houseman et al.
2001).

Clinical Variability of GJB2 Mutations That Cause
Autosomal Recessive NSHL

The audiological phenotype observed in individuals
with GJB2 mutations is variable, even in those from the
same ethnic population who have the same homozygous
or compound-heterozygous GJB2 mutations. Most bial-
lelic GJB2 mutations affect both ears to a similar extent,
but asymmetric NSHL has been reported (Denoyelle et
al. 1999; Wilcox et al. 2000). For homozygous 35delG
individuals, the degree of hearing loss observed among
probands and siblings can fluctuate between mild and
profound. Whereas the majority of individuals present
with nonprogressive severe-to-profound NSHL (Kelley
et al. 1998; Denoyelle et al. 1999; Murgia et al. 1999),
progression of the sensory deficit in some 35delG ho-
mozygotes has also been observed (Cohn et al. 1999).
For 167delT homozygotes of Ashkenazi Jewish ancestry,
a trend in the variability of the degree of hearing loss is
also evident among probands and siblings (Lerer et al.
2000). However, a common characteristic of the sensory
deficit in individuals identified as having biallelic GJB2
mutations appears to be onset during early childhood.

The association between the variability in the degree of
hearing impairment and mutations in GJB2 supports a
role for external modifying environmental and genetic
factors.

GJB3 and Autosomal Recessive NSHL

Mutations in GJB3 were identified in families with
autosomal dominant NSHL and EKV (see the “GJB3
Encoding Connexin 31 (Cx31)” subsection; also see Ri-
chard et al. 1998a; Xia et al. 1998). After GJB3 had
been found to be associated with autosomal dominant
NSHL, 25 Chinese families with autosomal recessive
NSHL were screened for GJB3 mutations. Two unre-
lated families were identified with compound hetero-
zygous GJB3 mutations, indicating that, like GJB2, re-
cessive GJB3 mutations are also associated with NSHL
(Liu et al. 2000). No other GJB3 mutations have been
associated with autosomal recessive NSHL.

Concluding Remarks

The identification, in the connexins, of specific muta-
tions that are involved in skin disease and hearing im-
pairment has revealed intriguing genotype-phenotype re-
lationships, in addition to supporting the importance of
gap-junction intercellular communication in both the ep-
idermis and the epithelial cells of the inner ear. Although
mutations in two connexins—GJB3 and GJB4—un-
derlie clinically similar epidermal disease, it has also been
observed that, among individuals carrying the same mu-
tation, some dominant mutations in GJB2 have variable
penetrance with respect to hearing loss and/or severity
of the skin disease, raising the possibility that other ge-
netic and environmental factors modify the penetrance
of the mutations. One of the most surprising genetic
findings is the association between recessive GJB2 mu-
tations and a significant proportion of nonsyndromic
sensorineural hearing loss. The role of connexins in
NSHL will facilitate an increased understanding of in-
ner-ear processes and will benefit individuals seeking ge-
netic counseling for autosomal recessive NSHL.

The use of classical model systems to assay connexin
function, such as by the measurement of intercellular
conductance in the paired-Xenopus-oocyte-model assay
and the mammalian cell-culture systems, has produced
data on dominant inhibition of intercellular conduc-
tance and on defects in gap-junction assembly, respec-
tively (Richard et al. 1998b; White et al. 1998; Martin
et al. 1999). With relevance to the b connexins discussed
in this review, the only published connexin knockout
mice are those for Cx26, which, because of placental
failure, result in embryonic lethality at day 9.5 (Gabriel
et al. 1998). This differs from the phenotype observed
in humans, in which recessive protein-truncating GJB2
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Figure 3 Expression patterns of three connexins—Cx26 (a), Cx30 (b), and Cx31 (c)—in human epidermis of the sole. Immunofluorescence
staining with connexin antibodies, performed on frozen sections of the sole, shows the distribution and the characteristic punctate membrane
staining of connexins.

mutations are associated with hearing impairment. Bet-
ter models of human connexin disease may be gener-
ated, by means of gene-targeting technology and tissue-
specific promoters, through replication, in mice, of the
human dominant b-connexin mutations. However, it
appears likely that, to really understand why some mu-
tations in the same connexin protein cause skin disease
whereas others cause hearing impairment will require
study of these mutant connexins in the context of other
connexins expressed in the affected tissues and in the
unaffected tissues; for example, although Cx26 has a
wide tissue distribution, Cx26 recessive mutations cause
only NSHL, suggesting that, in other tissues, other con-
nexins can compensate for loss of the Cx26 protein.
This is particularly relevant to the epidermis, in which
�10 connexins are expressed (examples shown in figure
3; authors’ unpublished data). Recent data from the
paired-Xenopus-oocyte–model–expression assay have
shown that DE42 (as well as other dominant Cx26 mu-
tants that result in a skin phenotype) inhibit the channel
activity of coexpressed Cx43 (GJA1), another connexin
that can colocalize with Cx26 in epidermal keratino-
cytes (G. Richard and M. Hodgins, personal commu-
nication). Although it is not physiologically understood
why so many connexins are expressed in the epidermis
(or in the inner ear), multiple connexins result in chan-
nels with characteristic permeabilities for ion selectivity
and cellular metabolites (Cao et al. 1998; Goldberg et
al. 1999; Niessen et al. 2000). Some studies have sug-
gested that connexins, because of their association with
specific tight junction proteins, may have functions in
addition to that of gap-junctional communication
(Giepmans and Moolenaar 1998; Kojima et al. 1999).

Because of the link between b-connexin mutations
and disease, the study of the functional mechanisms by

which these mutations exert their effects will increase
our understanding of connexin and gap-junction biol-
ogy; specifically, the distinct autosomal dominant mu-
tations found in four of the b connexins that underlie
hearing loss and/or epidermal disease plus, in one case,
peripheral neuropathy will require further functional
characterization as to why, in different tissues, they have
different effects on channel function. As well as disease-
associated mutations, numerous coding single-nucleo-
tide polymorphisms (SNPs) in the connexin genes have
been identified (see The Connexin-Deafness Home-
page), and these will also aid in the dissection of the
structurally important residues and domains in the con-
nexin molecule. It is possible that these SNPs may also
modify the severity of disease.
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